Ali Eberts

KIN 856 Assignment 2

Newton's Laws in Relation to Squats

I am analyzing how Newton's laws of motion <u>relate to kicking a soccer ball</u>. To kick a soccer ball, the kicking leg is bent at the hinge joint of the knee, causing a flexion of the muscles above and below the knee. To kick the ball, the knee and the hip joints extend through the sagittal axis as the hinge joint of the ankle is in a plantar flexion to connect with and send the ball. Depending on the amount of force used, the ball and socket joint of the hip may hyperextend as it follows through the kick.

	Description of Skill	How is This Law Associated?
Law		
	An object at rest/in motion will remain at rest/in unless acted upon by some	When kicked, a soccer ball will not stop until it is kicked again, or blocked,
Law of Inertia	force.	headed, picked up, stopped by friction etc. The distance the ball travels directly
	If the ball is not moving already (from a	relates to how much force is applied
	pass or another kick), gravity will hold it	from the kick. This could relate to how
	stationary in place until it is kicked,	fast and how far the hip hyperextends
	picked up, etc.	against gravity through the sagittal plane to deliver the kick.
	If the ball is already in motion, it will	
	change direction according to force and	
	direction applied in the Kick.	The distance the hall travels is related to
	proportional to the force applied	the weight of the person kicking the
	inversely proportional to the mas of the	hall/the amount of force the kicker uses.
Law of	object, and will travel in the same	Those with strongly developed gluteus
Acceleration	direction of the force.	maximus and biceps femoris will have
		more strength to deliver through the
	A heavier ball will require more force to	sagittal plane as the knee and hip joints
	move fast and far than a lighter ball	extend and hyper extend to make
	numped into it will travel faster and	contact with the ball.
	farther than a ball that is flat.	Additionally, a person approaching the
		ball very quickly will transfer the
	The mass of the person kicking the ball	momentum of his or her speed to the
	is directly proportional to the speed the	ball, which will send the ball farther and
	ball will travel, and so is the speed at	faster than someone approaching the
	which the kicker is traveling.	ball slowly.
		Thus, a person with more mass will
		send the ball further and faster than a

		person who is lighter, and a person who is approaching the ball fast will send the ball further and faster than someone approaching the ball slowly.
Law of Reaction	For every action, there is an equal and opposite reaction. The action is the transfer of force from the kicker to the ball.	However hard the ball is kicked, it will "kick" back just as hard. The noticeable reaction is how far/fast the ball travels. The less noticeable opposite reaction is the how hard the ball kicks back.
		This opposite reaction is less noticeable because, compared to the soccer ball, the leg of the kicker has more mass, which means more inertia (or resistance to move); that is, the hip joint does not hyper extend backward in the opposite direction of the ball.

References:

- Hall, N. (2015). "Forces on a soccer ball." *National aeronautics and space administration.* Retrieved from <u>https://www.grc.nasa.gov/www/k</u> 12/airplane/socforce.html
- "Physics of soccer" (2017). *The science classroom.* Retrieved from https://thescienceclassroom.wikispaces.com/Physics+of+Soccer#Physics of Soccer-Newton's Laws of Motion-Newton's 2nd law.